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Flow metering nozzles and orifices have been studied for a century and with adequate care in
installation can measure flow rates to better than one percent. The growing demands of fire science has
introduced new flow problems presented by doors and windows, burn through and other holes in the
ceiling and fireman opened holes in the roof, horizontal or inclined. This paper presents a unified formula
for all these cases. As wusuval, a practical ideal formula is theoretically derived and then empirical
constants are added to correct for omitted phenomena. High precision is neither needed nor attainable

- since the nature of the vent (size , shape, edge geometry) is poorly known or not known at all. In addition
the gas velocities and temperatures on the two sides of the vents are poorly or completely unknown
Finally experimental data for validation of flow coefficients are very limited or are as yet unavailable

Introduction

It has become conventional to define an ideal flow through a nozzle or orifice by the
equation 1 derived by use of Bernoulli’s equation.

m = AQpAp)"? 1
This equation ignores various inlet and other flow effects and viscous boundary layers. For metering
purposes , the Reynolds number is usually 10* or higher so equation 1 is corrected as in equation 2 by a
flow coefficient 7

m = ThAQRpAp)'” 2
where Tp, ~ .98 for a nozzle T;, ~.6 for an orifice. Figure 1. shows more detailed accuracy in the region Re
> 10" ( 1). The low orifice coefficient .6 is caused by the contraction of the exit stream to a vena contracta
area of A, ~ .6A.

When this same ideal flow equation 1 is used to compute the fire flow through an orifice in a
horizontal surface (2,3,6), the flow coefficients are in the range .1 to .2. Without any apparent concern for
how the coefficients got so low, the experimental results, including a region near Ap = 0 where
simultaneous in-out flow occurs, are presented assuming the buoyancy caused by density difference
requires a Froude Number for data presentation. Cooper (6) in particular has made an extensive empirical
analysis assuming that

T =T, (Fr, Gr.Ap/p,IT) (Note: TT# t  see notation) 3
Analysis

Consider the horizontal vent fire case of hot gas below and cold gas above. 1 will set it up with
all my initial misconceptions to be corrected later. The positive direction is up. The pressure drop is
defined as Ap=1p;- pPo (negative if flow is down)

The density changeis Ap=p, -p;  (negative if cold gas is below)

h = the distance up to the vena contracta  (negative if down)

£’ = the component of gravity inward perpendicular to the vent surface.

The flow controlling velocity is at the vena contracta and is given by Bernoulli as

v=(2{Ap + Apg’h}/pp'? 4
the volume flow and mass flow follow as
Q=vA, and m=pQ=pyA, ' 5

To make these relations correct for all flow directions, pressures, and temperatures we need to insert all
the correct signs and add flow coefficients for the omitted effects.

v =sign(Ap + Apg INC,(sign(h)2{Ap + Apg’h}/p)"> 6
Q= sign(Ap + Apg’h)C,C.Adsign(h)2{Ap + Apg’h}/p)™> 7
m = sign(Ap + Apg 1)C,C..A(sign(h)2p{Ap + Apg h})” 8

where C, - corrects for viscous and other neglected flow effects



C.. = A, /A corrects for the flow area change to the vena contracta.

h - corrects for buoyancy effects from orifice to vena contracta

the flow coefficient Cp = C,C,

For high Reynolds numbers (above 10*) the buoyancy effects are unimportant but by crude observation
h=~D.

Consider the metering nozzle and orifice. The nozzle coefficient, Cp,, Figure 1, Re > 10%, is
required to correct for viscous boundary layers and turbulence. Thus for the metering nozzle Cp = Cp
(Cyv= 1). There is no nozzle vena contracta. The orifice coefficient has a viscous effect similar to the
nozzle but also has a large dynamic contraction to the vena contracta controlling the flow area. thus for
the orifice its flow coefficient Cp = C,C,. . Since Cp (orifice) ~ .6 and C, = 98, C.,o~ 612. 9

Note that below Re ~ 10 the nozzle flow coefficient falls while the orifice flow coefficient rises.
. Clearly viscous effects are increasing in importance relative to the dynamics as Re falls while for an
orifice the falling dynamics also prevents the approach fluid from jumping off the orifice lip so vigorously
and hence the vena contracta area becomes larger. As the Reynolds number falls C,. is expected to
continue to rise toward 1. The dashed line of figure 1 shows the computed C,. by equation 9 for Re > 10*
whilf the C,. for Re < 10" is the expected effect (no data available). (much new test data is needed for Re
< 10%.

The Horizontal Orifice

The flow is given by equation 8. Figure 2 shows the predicted flows for various cases. For m > 0
the flow is up while for m < 0 the flow is down. If Ap > 0 (the fire case) and the flow is up h > 0, the
flow varies with Ap as in figure 2a. Note that at Ap = 0 there is still upward flow by buoyancy.

m= C,Co.(2psApg’h)'? and m = 0 at Ap = -Apg h>0 (no up flow. therefor flooding down flow) 10
If Ap > 0 and h < 0 the flow is down and at Ap = O there is still down flow by buoyancy
m= -C,.Cue(-2puApg h)? and m = 0 at Ap = -Apg’h>0 (no down flow. Therefor flooding up flow) 11

If Ap < 0 (high density below) the upward flow (h > 0) is zero at Ap =-Apg’h > 0 12
and downward flow (h < 0) is zero at Ap =-Apg’h < 0 13
This last case is shown in figure 2c where a stable region with no flow is predicted as is too be expected.

Finally if Ap = 0 i.e. no density difference, figure 2b shows the result,

Experimental data (3,2) presents flow coefficients, T}, defined by equation 2. For this new theory
Cp = C,C., is defined by equation 8. Thus Cy, and T), are related by

Co = Co{1+ Apg’h/Ap} ' 14
To make the conversion requires values of h. At the lazy flooding flow, the distance “h” to the vena
contracta is nearly zero as seen in the shadowgraphs of reference 3. However at flooding Ap = Apg’h
while experiments give o

WD = Ap/Apg’D / Ap/Apg’h = Ap/Apg’D 16
This has the experimental value of about 2. (Present data has considerable scatter and no apparent
correlation.). Clearly h is not the distance to the vena contracta as first assumed, It is the distance over
which buoyancy has an influence on the flow. Some experimental values as high as 6 are not believable.
New experimental work is essential to find and correct current mistakes in experiment and theory.

Another important change is to use the conventional dimensional variables for a viscous,

buoyant flow. Thus :

Cp = Cp(Re, Fr) Re=VD/v, Fr= V/(g'd)"? 17
The available data is inadequate to use this relation correctly. Experiments should be made holding one
independent variable constant while the other is varied. Such data has never been taken,

The best that can be done with available data is to plot the experimental C, vs Re as in figure 1.
The lower curve shows the data which falls at 5x10% < Re < 4x10°. The curve between Re = 4x10’ and 10"
is drawn by eye but the data fits together remarkably well. Using equation 9 and C,, and C, from figure 1
permits the calculation of C,, over the whole Reynolds number range. In figure 1 C, for Re between 4x10°
and 10" derived as above fits remarkably well. New data in this range is needed.

Since Cp and Cp curves were drawn (with good fit) by a logarithmic french curve, they plot as
straight lines on cartesian coordinate paper and hence are defined by linear equations as shown on
figure 1. The C,. curve has a more complex formula, quadratic in log Re.
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Tt is now clear why the flow coefficients are so low for the normal range of horizontal orifice
flow. The Reynolds number is so low that the flow is dominated by viscous forces.

The flood point would be expected to be controlled by the Froude Number. Figure 3 shows how
the Froude number at flood varies with the density change Ap/p. (the data of Tan and Jaluria (3) is
puzzling. Their experimental work appears very good. Either their flood data is bad or the other Fr(Ap/p)
data (2.5) is some how inadequate). If Ap = 0, the boundary between up and down flow is at Ap = 0 and
hence Fr = 0 as plotted. The solid curved line is the best fit while the dashed straight line is accurate
enough for fire purposes.

It remains to compute the up and down flow between the flood limits. At flood conditions,
measurements (4) at Ap = 0 gave

Qu/(gD’Aplp)'? = - 055 18
. from which follows the Ap = 0 downward mass flow
my /ApA[gD]'? =-.202 19

The up and down region is shown in figure 4. The two flood points are shown ¢ which terminates the one
way flow regions. There is too little data for the flow in this region, so a linear assumption is used. For up
flow, for example, the flow is assumed to vary as the straight line from the upward flood point A to zero at
the pressure drop (negative) of the downward flood point..

To find the flow (up or down) at any Ap in the two flow region, we note that at flood

Fre= Vi /(g'D)"? = m¢ /pA(g’D)'? = .591 Ap/py 20
so that

my /sign(h)ApA(g’ D) = 591 21
The corresponding pressure drop is

Ape= sign(h) .0873 Ap’g’D/Cp’py 22

Note that unlike figure 2 (where it was assumed that h, = D) the magnitude of the pressure drop for up
and down flow flood are different because of Cy,’p and therefore h by equation 16 is different for up and
down flow. However the linear assumption for the conditions of the experiment of equation 18 (4) at Ap=
0 gives

my /ApA(g'D)'? =- 275 compared to equation 19, -.202 23
While this agreement is not perfect, it is better than our general knowledge of the size and shape of a burn
through hole in a ceiling. Much more experimental work is required to measure the actual up and down
flows.

To compute the flow through a horizontal vent given the pressures and densities one must.
From the densities compute Ap/ps
Compute the Froude number Fr= 591 Ap/ps
Compute the Reynolds number Re = Fr(g'D’)"/v _
Look up Cy, from figure 1 (or compute it from equations given there)
Compute m from equation 8
Compute m¢ from equation 21. Two values + and -
If lm| > l my ‘ then m is the one way flow through the vent
If |m| < | mgl then there is two way flow through the vent _
Compute Ap; from equation 22 for both up and down flow. Ap;= Ap, > 0 up, Ap; = Apy < 0 down
10. Compute m, = |mf| (Ap-Aps)/(Ap,-Apy) and my= | mgl (Ap-Ap)/(Ap.-Aps)

These are the up and down flows in the two flow region.

This theory like many others for flow through a horizontal vent contains many assumptions
which can only be removed by careful experimentation.

0NN R LN

o

The Vertical Vent

In this case the gravity component perpendicular to the vent surface is zero; g” = 0. Gravity acts
parallel to the vent surface so that both inside and outside pressures decrease with height which must be
found by integration.

Ap = Ap, + ] Apgdy 24
which for constant densities p, and p; becomes
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Ap = Ap, + Apgy = Ap, - Apg(H - y) 25
If Ap = 0, the pressure drop Ap is the same at all levels. Since the pressure difference varies with height y,
the equations 6,7,8 must be applied to an area element dA = w dy. Thus

= sign(Ap)C,(sign(h)2Ap/p)'? 26
dQ = sign(Ap)C,.C.owdy(sign(h)2Ap/pp'”> 27
dm = sign(Ap)C,.C,owdy(sign(h)2paAp)? 28

These equations have included the customary assumption that the flow velocity at any level y depends
upon the difference in pressure at the same level y far from the vent. This ignores the fact that buoyancy
causes the in-out flow boundary in the vent to be somewhat higher (7). This omission must also be

corrected by the flow coefficients. If the density is everywhere the same, the total mass flow is
m = sign(Ap)C,.C, A(sign(h)2pAp)'? 29

=S A T R U LU VR Srey 84
Only in this case is zero flow possible (w:th Ap=10)

If both p, and p; are constant at all levels but Ap # 0, integration then gives the one way flow as

m = sign(4)8"%/3C,Cohp®( Iap,] + (ApAp)™ + lapd Y(Iap) 2 + lap) '?) 30
If either or both densities vary with height, then the pressure difference varies with helght and equations
26,2728 must be integrated. However if the densities are constant in layers, equation 30 can be applied to
each layer.

Again for constant densities, Ap = 0, the flooding flows occur for outflow at Ap, = 0 and Ap > 0
or Ap, = 0 and Ap < 0 while for inflow Ap, = 0 and Ap <0 or Ap, = 0 and Ap > 0. As the pressure drop at
the bottom of the vent goes from large positive to large negative, the out flow decreases from a large value
to the flood value at Ap, = 0. Then the boundary between the in and out flow moves from the bottom to the
top of the vent. The inflow flooding flow occurs at Ap,=0 at which time Ap,=-ApgH. For all
Ap < -ApgH there is inflow only.

Unlike the horizontal vent, there is no zero flow region in Ap and the in-out flow boundary is
fixed at one (or more) heights depending on the specific case. For the horizontal case the in-out boundary
wanders randomly over the vent area.

An extensive study has not yet been made of the available data. For most fire purposes a flow
coefficient of .68 is sufficiently accurate over the whole Reynolds number range. However available data
(7) (with considerable scatter) shows that for Re < 2000 that the outflow coefficient roughly follows C,
and the inflow coefficients follow Cp. Also (by eye) (7) h= D.

The Inclined Vent

Figure 5 shows such a vent. If the pressure drop across the vent at the bottom is Ap,, the pressure
drop at any other helfht must be found by integration.

Ap=Ap, + ["Apg Sin 6 dy 31
which for constant densmes gives
Ap=Ap, + Apgy Sin 6 = Ap, - Apg(H - y) Sin 6 32
The equations 6,7,8 must again be applied at each y
" v=sign(Ap + Apg h Cos® 8)C,.(sign(h)2{Ap + Apg h Cos’6 / pp'? 33
dQ = sign(Ap + Apg h Cos® 6)C,C.ow dy (sign(h)2{Ap + Apg h Cos’ 8} / p)"? 34
dm = sign(Ap + Apg h Cos® 8)C,C,.w dy (sign(h)2p{Ap + Apg h Cos® 6})" 35

Again the flow can only be determined by integration of each specific case. There is no zero flow case
since again Ap, = 0 and Apy are the two flooding limits for p, and p constant (Ap # 0). The transition from
in to out flow occurs by the zero flow location in the vent moving from y = 0 to y = H. Finally the flow
with uniform but different densities is given by equation 30 where the pressure variables are replaced by

Ap - Ap+Apgh Cos’ 6 Ap, —> Ap, + Apg h Cos?6:  Ap, —> Ap,+ Apg h Cos® © 36

As the inclination 8 approaches zero, the zero flow location which has started at the bottom and
moved to the top loses its significance since Apy flood is forced by buoyancy before Ap, = 0 at the bottom.
Therefore as 6 = 0 the in-out flow locations wander randomly over the vent area, tripped by vent edge
irregularities and inlet flow disturbances. If © becomes so small that either or both Ap, or Ap, fall between
the two flood values Apy, the flow will become that of a horizontal vent.
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Conclusion

The flow through fire vents (often ill defined) can be computed for ail vent shapes and
orientations. The accuracy is the highest attainable with the present meager data from which to compute
the effective flow coefficients Cj, and buoyancy effective lengths h. Many more experimental studies are
necessary to get the desired accuracy. In fact the accuracy of flow through burn through holes in walls or
ceilings may be forever impossible because of the probable impossibility of ever predicting the size and
shape of the vent.

There are obviously enough challenging fire problems to occupy a generation of Ed Zukoskis

Nomenclature

A vent area V=m/ps A Velocity in the vent
Ay vena contracta area ' w width of rectangular vent
Cp - new theory flow coefficient y coordinate across vent
Cp old theory flow coefficient Greek Letters and Subscripts
C..= A,/A contraction factor 1= Ap/4gApD
Cy. viscous correction factor 0 roof inclination
D vent diameter p density
Fr=V/(g’D)'” Froude Number P mean density
Fr=v/(g’DAp/p)"? d lower variable
Gr Grashoff number f density of flowing fluid or flood
g component of g normal to vent  ; inside variable
g gravity constant o outside or bottom variable
h effective buoyancy length . soffit variable
H height of rectangular vent ve vena contracta variable
m Mass flow u upper variable
p Pressure
Re = VDp/p Reynolds number
v vena contracta velocity
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Discussion

Henri Mitler: Does this work of yours include the possibility of the periodic motion like when we
fill up a bottle with water and then turn it upside down, it goes glug, glug, glug?

Howard Emmons: I have no data to answer that question. I suspect that the corrections are not
very significant, but I don’t really know. On the other hand, this has not been considered directly
and does involve additional effects. In order to have oscillator flow, you have to have a capacity
for absorbing extra mass and not oil. So there has to be an influence by the oscillating flow on
the fire or something or other to permit that oscillation, that has not been included here at all.

Edward Zukoski: We have tried to do some of these experiments near the flooding point and
found that it was the other effects that you talked about, that is how you contain the upper
volume and so forth, that were very important in fixing the frequencies and so forth of the glug,

glug, glug.

Gunnar Heskestad: Howard, when you presented your data, you presented it as a function of
Reynolds number, but the data involved Froude numbers as well. I wanted to know how you
decided to just present it as a function of Reynolds number.

Howard Emmons: The decision was fairly simple and elementary. The primary reason was
because I tried it with Reynolds number alone and it worked beautifully, which said to me that
my correction for buoyancy worked. The flow coefficients that I used in that correlation had to
be recomputed based upon my formula. I could not use the one that you and others could
correctly use.

Leonard Cooper: We’ve looked at the fire situation as unstable, heavy fluid or light fluid and
you have a general solution which is a different approach. The solutions that we looked at are
good and correlate well with data there for high Grashof number data. This idea is also confused
with the fact that Heskestad data contains some Grashof number data which also does not
correlate. In this sense, Grashof number does play a role and one has to be careful, it would
appear.

Howard Emmons:
It is entirely possible that the Grashof number is the number that has to be added, as I mentioned
earlier, in order to get a better correlation.




